Share on facebook
Share on linkedin
Share on twitter
Share on facebook
Share on linkedin
Share on twitter

What Is Big Data Analytics and What Does It Mean for Businesses?

Marketers have more data than ever at their fingertips, but how to make sure you are using the data to its full potential? Big data analytics can unlock the power of data, and offer insights on customer habits, interests and trends, helping you predict their future actions and plan your marketing campaigns accordingly. 

 

What Is Big Data Analytics?

Big data refers to not only the huge amounts of data, but also the varied and numerous different types of data sets. This data includes customer behaviors like spending habits and interests, consumer trends, as well as hidden patterns and correlations that can help illuminate current market fluctuations.

Marketers can make sense of this data through the methodology of big data analytics, which is a form of advanced analytics, requiring high-performance analysis systems. For many companies, the investment can really pay off.

 

What Are the Benefits of Big Data Analytics?

Knowledge is power, as the old adage goes. Big data analytics can unlock an enormous amount of knowledge about what your customers want, do, fear and dislike on your channels, but also on external websites. It can also provide unique insights on seemingly unrelated aspects of your customers’ lives – these might seem immaterial, but they can all help you cater better to your audience.

As well as telling you what is currently happening in the market, big data analytics can provide a glimpse into the future. By leveraging artificial intelligence (AI) to advanced statistical modelling techniques, you can predict with a high degree of precision how your customers will behave based on their past actions and real-time intent. This helps you plan for the future – for example, by adjusting supply stock based on how well a certain item is likely to sell this season, or sending personalized product recommendations to increase share of wallet.

Big data analytics can also help you unlock new revenue opportunities, market more effectively, offer a more highly tailored and more personal customer service, improve your operational efficiency and gain a competitive edge over your rivals.

It all adds up to a higher return of investment (ROI). 

 

How Does Big Data Analytics Work?

Big data often includes unstructured and semi-structured data types that pose unique challenges to data analysts – because of their nature, these types of data often do not fit in traditional data warehouses which were developed to handle more structured data sets. Also, these warehouses may not be able to handle the intense processing demands posed by big data analytics. As such, big data analytics is often handled by NoSQL databases, as well as Hadoop and its companion data tools.

Raw data is usually deposited into a Hadoop data lake, where it can be managed and prepared for the various analytic processes synonymous with big data analytics. These are:

Data mining (sifting data sets to find patterns)

Predictive analytics (forecasting future customer behavior)

Machine learning (leveraging algorithms to analyze large data sets)

Deep learning (using neural networks to process large volumes of scattered data)

Text mining (using natural language processing to analyze written text from sources like the web, comment fields, social media and books)

 

How Is Big Data Analytics Used Today?

Big data analytics is becoming increasingly key across a number of industries. Among them are:

Banking. Large volumes of unstructured data can provide financial institutions with vital insights so they can make more accurate financial decisions.

Health care. Big data analytics can be applied to disparate patient information like records, health plans and insurance details to provide vital diagnoses and treatment options.

Retail. By analyzing the copious amounts of customer data generated by online activities, loyalty programs and purchasing histories, e-commerce sites can gain a more intimate understanding of their customers’ needs in order to serve them better.

Manufacturing. Supply chains, labor constraints and equipment breakdowns are just three areas where big data analytics can be applied, creating new cost-saving measures and revenue opportunities for manufacturing firms.

Life sciences. Improving speed and efficiency is a key application of big data analytics when it comes to the methodical, slow-moving world of research-led life sciences.

 

Big data analytics has a myriad of applications in all kinds of industries, improving firms’ efficiency and helping them thrive in ever more competitive marketplaces.

Want to know more about how you can leverage AI to make the most of your data to improve business efficiency, optimize marketing strategies, and boost ROI? Get in touch with us today.

WE ARE HERE TO HELP

Let us know the marketing challenges that you’re facing, and how you want to improve your marketing strategy.

YOU MIGHT ALSO LIKE

AIQUAホワイトペーパートップ画像

How Your Travel Business Can Use AI to Drive Meaningful Engagement

Your travel or tourism enterprise has probably benefited from the recent upsurge within the sector overall. In 2017 alone, the industry contributed over US$8.27 trillion to the global market. So how can you use this demand to win not just short-term gains, but also long-term value? It’s not easy when — along with major growth — the travel and tourism sector has seen other changes too. The spread of online travel agencies, the rise of artificial intelligence (AI), and customers’ demands for unique destination experiences and seamless self-service all have a role to play in how you attract and retain customers.     The Data Dilemma One challenge is dealing with the vast data generated in your operations, such as information about your customers’ travel destinations, preferences, budgets, and much more. Turning it into meaningful customer experiences can lead to higher conversions, stronger engagement and repeat business. But, even with all the data you have, there’s a whole element that may be missing from your efforts. Travelers are looking for an easy search process to find personalized and timely offers of just the right destination. For that, you need knowledge about their interactions elsewhere online, such as travel content consumed

5 Best Practices for App Retargeting

Onboarding new app users is only the start of the battle. Once you have gotten new users to start using your app, you need to think about how to re-engage them to make sure they stick around.   Planet of the Apps: More Choice Means More Competition Apps represent a huge opportunity for companies. They let you showcase your brand in the best possible light and allow customers to engage with it wherever they are (as long as they have their phone with them). In Q3 2019, global app revenue grew 23 percent year-on-year to a staggering US$21.9 billion. However, this only tells half the story. While customers are downloading more apps than ever, they are not using them all – indeed, they can’t possibly have time. Globally, the average smartphone user has around 80 apps on their phone, only half of which they use each month. In other words, users are also abandoning apps in record numbers – more than a fifth of all users abandon an app after just one use. So how do you make sure yours is not one of them?   Retarget to Re-engage One of the most effective ways is by retargeting. Retargeting refers

It Is Time to Rethink Customer Loyalty in Travel

Customer loyalty isn’t what it used to be. In today’s highly competitive digital travel market, not only are consumers doing more complex research, but their decisions are based on individual need, not familiarity with the brand or the product they usually go for, making winning their loyalty tough. With artificial intelligence (AI), however, this task just got easier.                                         Fragmentation and Finding the Perfect Fit It is widely proven that the chances of selling to an existing customer are higher than selling to a new one – as much as 60 to 70 percent compared to 5 to 20 percent. Not only do they know your brand but, if they have had a good experience with you before, there is also trust. However, a customer can be exposed to hundreds of touch points on a single purchase journey, viewing multiple websites and ads before committing. So, securing that next booking is not guaranteed. Ultimately, if another brand sparks their interest, they are off. Loyalty cards are no longer enough. Customers today are looking for that perfect travel product rather than familiarity