Share on facebook
Share on linkedin
Share on twitter
Share on facebook
Share on linkedin
Share on twitter

Risk and Reward: The Role of AI in Acquiring Credit Card Prospects

The increasing uptake of artificial intelligence (AI) by the financial services industry in Asia Pacific (APAC) is set to change the way companies acquire and engage customers, as well as reduce risk. Advances in deep learning help organizations gain a more holistic view of potential customers, and provide better judgement as to their suitability for finance, such as credit cards and loans.

With revenue of approximately US$1.6 trillion and profits of about US$700 billion in 2018, the banking industry in APAC accounted for 37 percent of the world’s banking pre-tax profit. Trends show, however, signs of decelerating growth, tapering margins and the need to scale to boost performance and remain competitive.

The good news is that the APAC credit card and loan market has great potential to grow. Despite low penetration in many APAC countries, the region accounts for about half of global credit card expenditure. This makes customer acquisition for credit card products a clear path to future profit.

In the meantime, the increasing adoption of AI tools in finance will see AI become a key player in customer acquisition, combining marketing savvy with sharpened risk assessment thanks to deep learning, as banks and financial institutions, including peer-to-peer (P2P) lenders, seek to grow their portfolios through credit cards and loan products.

After retail, banking will be the second largest industry to invest in AI, with US$5.6 billion expected to go towards solutions including threat prevention and fraud analysis.

Countries such as China and South Korea have already paved the way with their AI initiatives. Chinese fintech companies are targeting less advanced Southeast Asian markets, such as Indonesia, Vietnam and the Philippines, by deploying AI to acquire P2P lending customers as well as manage credit risk and assure compliance for debt collection. Meanwhile, in 2018, the government of South Korea pledged to invest US$2 billion into AI research and development by 2022.


Be Selective, Be Precise

The role of AI in customer acquisition and engagement is twofold. Financial organizations can use AI’s deep learning capabilities to gain a holistic picture of their target audience. The advantage of this is that the more data the AI has, the better its predictions and decisions.

Combine your historical customer data using a data science platform, such as transactions, previous campaign results and past customer activities on-site, and then let AI sift through all the data to analyze user behavior across multiple devices and draw a complete picture of your customers. Such insight would help you target them at the right time on the device most likely to give the best response.

To dig deeper, you can add third-party data and use deep learning to discover customers’ interests and intent not only on your own channels, but also on external websites. This will help you pinpoint their life stage. For example, a retail bank may seek career women in their 20s who are browsing and investing in better quality office wear, whereas a P2P lender may like to target customers who are showing signs of entrepreneurialism in emerging economies.

With such knowledge, you can create audience segments based on desirable traits with regard to interests, intent and life stage. Deep learning can then predict future conversion rates and return on advertising spend of these segments to identify which ones are most likely to commit to a credit card or loan product.

These customer segments will also lend insight to personalize your campaigns and create ads, in order to drive higher engagement. For instance, Andy just paid off his car loan, and he has been reading articles about buying new apartments and property tax. You might consider him as a potential customer for a home loan in the near future. So, a content piece with relevant information through email or an ad with the best interest rate for home loans through web push will likely trigger customer engagement.

In addition, AI can also contribute to ongoing customer engagement and retention. By tracking customer engagement with and reactions to previous campaigns, it can identify the best time to deploy a campaign, the most effective marketing channels – whether that is an app push notification, an EDM or web push – and the creative material most likely to elicit a favorable response.


Assess Risk

Finding the most valuable customers for your credit card or loan products is one thing, but preventing fraud is equally important. AI tools can provide cost-saving measures in the risk management and fraud detection department. Finance companies are already using AI’s ability to process and analyze large amounts of data to find patterns that can point to wrongdoing, such as flagging anomalies in transactions that might signal fraud.

AI can also support customer acquisition by assessing risk even before marketing to potential customers. In a traditional assessment, credit card and loan providers would evaluate elements such as income, existing debt and repayment history, but AI can add further perspective by using supplementary data, from spending habits and lifestyle to property ownership, insurance claims and other personal indicators, to contribute to an assessment of the customer’s risk level.


The financial services industry is a data-heavy sector, which makes it ripe for the benefits and cost-savings AI investment will bring. AI’s ability to analyze data and predict behavior sees it as an asset in both the customer engagement space and as part of risk assessment and threat prevention. As fintech investment matures, don’t be surprised to see a significant uptake in AI processes and solutions to make this industry in Asia Pacific more efficient and effective, and help it scale to an even more competitive size.


* Want to find out more about how AI can help financial companies analyze data, make precise predictions and offer insights that enable them to create a more effective marketing strategy and campaigns? Download our latest white paper ‘Predict Customer Behavior in Financial Services: How Artificial Intelligence and Data Science Enable Better Marketing and Higher ROI’ now.


Let us know the marketing challenges that you’re facing, and how you want to improve your marketing strategy.


Fighting Ad Fraud with Artificial Intelligence

Advertising fraud, ad fraud for short, has become a major threat to the digital advertising industry. According to the Association of National Advertisers in the US, ad fraud will cost companies an estimated US$6.5 billion in 2017. A recent report by Juniper Research paints an even grimmer picture, estimating advertisers will lose US$19 billion to fraudulent activities next year. This figure, representing advertising on online and mobile devices, will continue to rise, reaching US$44 billion by 2022. The industry has spent considerable resources looking for effective ways to mitigate the effects of ad fraud. I use mitigate deliberately because just as with cyber fraud or financial fraud, there is no way to totally eradicate the problem: you can only hope to stay one step ahead of the bad guys. Most ad fraud countermeasures have centred on rule-based methods and these are effective ways to combat simple ad fraud activities. However, the ad fraud attempts are becoming more sophisticated and traditional countermeasures are inadequate today.   An AI-based approach As ad fraud attempts become more sophisticated and difficult to detect, so must our fraud detection mechanisms evolve in tandem and the only way that this can be achieved is using artificial

4 Overlooked Questions You Need to Ask Before Creating a Data Strategy

The world is awash with data, of which 2.5 quintillion bytes are created every single day, and globally, 90 percent of all data was generated in the past two years. This represents a huge opportunity for marketers, but it also brings challenges. Obtaining data is the easy part – the question now is how do you ensure that data is valuable and useful? How do you make sure it serves your business best by helping you formulate effective marketing campaigns? Here are four essential questions that are usually overlooked, but should be asked before creating your data strategy, in order to make sure that your data is valuable and serves your business’ goals.   Q1: How Recent Is Your Data?  Data recency is a key metric when building a data strategy. The more recent the data is, the more valuable it is, as it more closely reflects a consumer’s ever-changing behavior. Using analytics tools, you can assign your customers a recency score based on their recent visit to your website and the interval of a purchase they recently made. This will help you filter out new users, for example, if that would be helpful for your marketing strategy. This will

Why Performance Marketing is More Relevant Than Ever

Performance marketing is not a new concept, but recent events have made it more vital now than ever.   The COVID-19 has taken a toll on a number of industries. While companies around the world are starting to figure their way out to recover in the post-pandemic world, many remain cautious. According to the World Federation of Advertisers (WFA), global ad budgets will be down 36 percent in the first half of 2020, and are expected to drop 31 percent for the whole year. With a lower budget, you want to make sure every penny counts. Performance marketing allows you to see exactly how each ad dollar is used to ensure it is working as hard as possible. That means more efficient campaigns, with less money wasted.   What Is Performance Marketing? Performance marketing lets marketers decide on a desired action, and to only pay digital advertising platforms after that action has been completed. These actions can be a click, subscription, sale or download. There are different types of performance marketing, such as native adverts, which appear on media websites, and mimic the tone and style of the editorial content those platforms usually host. Another type is sponsored advertising, which is