Share on facebook
Share on linkedin
Share on twitter
Share on facebook
Share on linkedin
Share on twitter

Predictive Analytics: What It Is and How It Works

You may have heard the term ‘predictive analytics’ being often used when talking about digital marketing or data science. So, what does it mean, how will your business benefit from it, and how does it work exactly?

Read on for everything you need to know.

 

What Is Predictive Analytics?

Put simply, it is a way of analyzing historical data in order to predict future events. Typically, companies will utilize historical data to build a mathematical model. Given data and the model, the computer can make a prediction of the future. These trends can refer to the immediate future, just seconds, minutes, hours or days ahead, or can look much further into the future. This model can then predict what will happen next, or suggest steps a business can take in order to best meet its goals.

Predictive analytics is a subset of data analytics, and within data analytics, there is also descriptive analytics, which is to leverage historical data to better understand what has happened in a business, meaning paint the picture of the past.

Predictive analytics uses a wide range of technologies like big data, data mining, statistical modeling and machine learning to crunch data in order to uncover trends and predict possible future events, so your business can plan accordingly. These predictions are rooted in data, giving them a lot more credence.

It is often used in today’s predictive marketing, which is a marketing technique that leverages data analytics to determine how likely a business’ marketing strategies and activities will succeed.

 

The Benefits of Predictive Analytics

So why would a business use predictive analytics?

Predictive analytics lets companies use data to find patterns (for example, by uncovering relationships between various behavior factors) to predict the future. They can then exploit these patterns to either capitalize on an opportunity that will arise from a certain set of conditions, or to minimize risk.

This can apply across a whole range of businesses and a wide array of use cases. Retailers can use predictive analytics to predict demand for certain products, and hence tailor their supply chain requirements accordingly. It lets airlines forecast how popular certain flights will be, and so they can set the right prices to reflect the demand. Restaurants can also leverage it to anticipate how many diners they can expect on a particular night.

In the case of digital marketing, predictive analytics allow businesses to optimize their marketing campaigns in order to send out personalized messaging in the right timing. By doing so, they can generate new customer responses or purchases, and cross-sell to customers, helping them attract, retain and refine their customer base.

 

Predictive Analytics in Action

Chances are many consumers have already experienced predictive analytics in their online activities, for instance through Amazon’s ‘frequently bought together’ feature – this recommends other items someone might like to purchase based on their purchase history and what they are currently buying. Buy a coffee machine, and it might recommend some coffee pods to go in it, for example.

Or a customer has received a marketing email promoting replacement heads for her electric toothbrush three months after she last bought them. Here, using predictive analytics to help you anticipate that your customer will need to order the replacement every three months, and so you can deliver an email reminder or an offer for loyal customers to address her need and keep her hooked.

This is the power of predictive analytics – it predicts consumer behavior to help you tailor your marketing messages accordingly, and better allocate your marketing spend.

WE ARE HERE TO HELP

Let us know the marketing challenges that you’re facing, and how you want to improve your marketing strategy.

YOU MIGHT ALSO LIKE

Data-Driven Marketers’ Guide to Data Management

Marketing has always been highly dependent on data. And in today’s rapidly moving world, the importance of managing vast quantities of diverse data from disparate sources is growing. “There are three main issues when it comes to data management for marketers,” explains Dr Min Sun, Chief AI Scientist at Appier. “The first is data quality – the maxim of ‘garbage in, garbage out’ is critical for marketers. Once data quality is assured, the second factor to consider is the usefulness of the data. What data is valuable and which data sets can be used together? Finally, companies need to ensure they have robust governance in place. These cover the legal and corporate obligations including jurisdictional frameworks, such as General Data Protection Regulation (GDPR) in Europe, the Personal Data Protection Act (PDPA) in Singapore and others.”   What Is ‘Good’ Data? There are several dimensions to data quality. Dr Sun says that issues such as consistent errors and inconsistent noise in data can significantly decrease the usefulness and value of even huge data sets. However, a more subtle issue can come even when the data is completely correct, but the assumptions underlying the selection criteria are biased or skewed. As a

How Appier Fights Ad Fraud with Artificial Intelligence

Ad fraud is costing the industry billions of dollars. Joe Su, Appier’s Chief Technology Office, described in a blog post how Appier is using artificial intelligence to fight ad fraud. This infographic summarises how AI can help combat one of the top scourges of the advertising industry.

Omnichannel Retailing: What, Why and How

Today’s consumers want to interact with retail brands through multiple channels, be they online, mobile or in-store. Not only that, they also want an effortless shopping experience across all touchpoints. An omnichannel retailing strategy can help retailers meet this need, increasing customer engagement and, in turn, sales.   What Is Omnichannel Retailing? Omnichannel retailing is a methodology that allows you to be truly customer-centric, and ensures all your retail channels to work in harmony with each other. It breaks down the barriers between online and physical sales, creating a seamless shopping experience for the customer, regardless of where they are, what device they are using, and what channel they are accessing content from. With omnichannel retailing, inventories and supply chains are also managed as one single entity – like one central repository from which all retail channels can draw. That gives you as a retailer much more flexibility in terms of how you fulfill customer orders.   How Is It Different From Multichannel Retailing? While there are some similarities between the two, in practice they operate very differently. With multichannel retailing, each channel operates completely independently from each other – in fact, they may operate as if they are different