Share on facebook
Share on linkedin
Share on twitter
Share on facebook
Share on linkedin
Share on twitter

Pinpoint Your Ideal Audience With Machine Learning

Consumer behavior is increasingly fragmented, and that has resulted in the tsunami of data, which can be overwhelming for marketers. Thanks to the behavior-based model of today’s artificial intelligence (AI) tools, marketers can now leverage these tools to segment the audience beyond the traditional parameters to build a more accurate portrait of them as individuals.

By employing AI, you will be able to segment your audience into more granular tiers, and to see which are more valuable to your end goals. Considering that more than half of customers say they will walk away from brands that send messages they find irrelevant, it’s vital that you understand your customers’ current and future intentions as well as possible.

 

Individuals vs Categories: Looking Beyond the ‘Types’

Artificial intelligence can find hidden user patterns that have a positive or negative impact towards achieving the goal that marketers want to achieve. Hence it can help marketers reach a predetermined end goal, be it finding the more-likely-to-purchase audience segment to drive sales volume, or giving an existing audience a personalized product or content catering to their interest.

This is very useful for marketers. If a website has an audience of one million people, a marketer might want to target a certain segment of that audience, one which is more valuable to them (maybe they are more likely to buy their product, or read more of their articles).

The traditional way of doing this is by considering three dimensions: their demography (age, gender, social aspects); their behavior (how recently they visited the website, for example); and their interests. Using these, you can target people who put one item in their online shopping cart within the last seven days, for example. It can be quite accurate, but a lot of it is guesswork, which can also be biased or wrong. It would also only allow marketers to reach limited users with purchasing intent, whereas AI has the added value of finding all possible valuable-to-marketer-defined goal users.

AI also eliminates the guesswork. It considers many more factors to produce countless combinations. Let’s take a simple example. If we consider degree of interest (say 200), internet browser behavior such as how active each individual is in a period of defined time duration (1 million), site action (6), site frequency (100), site action duration (180), and multiply them all together, you would have an enormous number. Add in more age groups, users accessing the website on certain devices and another couple of factors, and you can see how quickly the possibilities escalate.

“AI gives you literally countless combinations,” says Magic Tu, VP of product management at Appier. “Usually people are phased by this level of complexity, and have limited time in which to interpret it, so they simplify the parameters. However, that loses the richness of the data.”

 

Following the Behavior Patterns

Not only does AI give you this incredibly granular view of your audience, it also tells you which factors will have the most influence over whether they convert into paying customers or not, and will spot those behavior patterns. It learns from the historical data and continuously adjusts the predictive result by incorporating whichever new data becomes available. All you have to do is to create the model and tell it your end goal. With AI doing all the heavy lifting, marketers are freed up to explore the potential opportunities hidden in the data.

By predicting what users are likely to do next, marketers can adjust their campaigns accordingly. For example, if a company used AI to find the customers most likely to buy a new product, they could segment these users and target them with personalized offers and/or messaging to help convert their intention into a sale.

 

Chicken, Cakes and Lookalikes: Getting to Know Your Customers Better

AI tools can also provide greater insight into your customers’ interests, and they can do so with an incredible level of specificity – instead of a subject like ‘food’, which is too broad to be of any use, AI tools will analyze the terms users use, such as ‘tonkotsu recipes’ or ‘chicken restaurants’.

The application of AI can make sense of social media posts too. By using natural language processing (NLP), it picks out the keywords and phrases (such as ‘I love this type of cake’) to gain a representative understanding of the post, and then to see its outcome (for example, whether someone who wrote that post went on to buy that type of cake). The more of these posts you feed it, the more accurately it’s able to analyze patterns of behavior, which it uses as a basis for building a predictive model.

“More structured data – like numbers – are of more use to AI,” says Tu. “By using NLP, we can turn articles, blog posts and social media posts into more structured data, which makes use of a huge repository of internet content.”

Using machine learning, ultimately we could segment audiences not only by their static attributes such as gender, age, interest and so on, but also predictive behavior in the near future which is the key marketers always want to know. Combining both static attributes and predictive behaviors together creates the most efficient audience segments that marketers could ever build to achieve their goals.

 

Changing the Conversation

Such innovations are changing how marketers reach out to customers. For instance, Appier’s Aixon solution recently integrated with Line, one of the biggest messaging platforms in Asia. By cross-mapping Line user IDs with Appier’s CrossX database of over two billion device profiles, it can segment them into keyword and interest areas. The customer organization then uses Line Business Connect to send personalized messages to the users most likely to respond positively.

If a Line user puts a product in their online shopping basket without completing the purchase, for example, the site owner can send them a personalized message through Line with a special offer to convince them to buy the item.

Thanks to AI tools, beauty brand Lancôme discovered that skincare shoppers and make-up shoppers are two very different segments. This lets it show a set of products, videos or articles for eye creams but not mascaras to the skincare shoppers, to avoid serving them with content they will find irrelevant. It also suggests foundation in shades closer to the user’s skin tone, instead of bombarding them with the full 185 shades, most of which will not be of interest. This has resulted in a conversion rate three times greater than previously.

By segmenting their audience using machine learning, marketers can build a more dynamic picture of who is using their service. By going beyond the static traits and targeting those customers who are more valuable, they can focus their marketing campaigns accordingly and meet their customers’ needs more effectively.

WE ARE HERE TO HELP

Let us know the marketing challenges that you’re facing, and how you want to improve your marketing strategy.

YOU MIGHT ALSO LIKE

Beyond E-commerce: Driving In-Store Traffic With Email Campaigns

Although global e-commerce is estimated to rise 20.7 percent in 2019 to US$3.535 trillion, it still only accounts for less than 15 percent of total retail sales worldwide. Most consumers would still want that in-store retail experience. While there are many digital tools to boost online sales these days, what about driving in-store traffic? The good news is, some of those same tools can bring people into your shop as well as help direct them to your website. The most potent of these is an email marketing campaign. According to eMarketer, 80 percent of retail professionals say email marketing drives customer acquisition and retention – that is more effective than both organic search and social media. In Asia Pacific, email sales are almost equal to those sold through a company’s website (14.4 percent compared to 14.8 percent, respectively), according to Deloitte. So, how can you harness the incredible power of the email marketing campaign to drive footfall into your bricks-and-mortar stores?    No Limits: Why Email Campaigns Are Not Just for Online Sales Because of their digital nature and convenience for customers, email marketing campaigns are commonly used to drive online sales, such as using online discounts and vouchers, remarketing

Why Customer Lifetime Value Matters and How to Boost It

Customer lifetime value (LTV) is a significantly important metric for any growth company. So, what exactly is it? Why is it important? And how can you measure and increase it? Here we answer all these key questions to help you better understand why you should and how you can boost customer LTV.   What Is Customer Lifetime Value? Customer lifetime value is a metric that tells you the average amount of revenue customers will generate over the lifespan of your relationship. It looks at how much your customers have spent over a defined period and, using this, you can anticipate how much they are likely to spend on your products in the future. It also takes factors into account like customer acquisition costs, sales, marketing and operating expenses, and product manufacturing costs.    The longer a customer continues to spend money with your brand, the greater their customer lifetime value becomes.   Why Is Customer Lifetime Value Important? Firstly, customer LTV is important because the higher it is, the bigger your profits. Secondly, knowing your customer LTV gives you valuable insight into how good your products are and how well you are engaging with your customers. If your LTV is high,

What Is Retargeting?

Your online business has attracted the interest of potential customers, but they are just not ready to spend money with you yet. According to a recent study, 92 percent of consumers who visit a brand’s website for the first time do so for reasons other than buying. If they do leave without spending any money, it can be very hard indeed to reach them again. This is where you can use retargeting (also known as behavioral retargeting) to bring potential customers back a second time around, driving uptake and increasing revenue for your business.   What Is Retargeting? Retargeting is a way of serving potential customers with adverts once they have expressed an interest in your products or services. Based on their behavior on your site, you would know what products or services they have expressed an interest in, which allows for a much higher degree of personalization within this retargeting marketing. Retargeting is different to remarketing though. Retargeting involves targeting ads to your website’s visitors once they are on the wider web, while remarketing refers to re-engaging customers mainly through email marketing. Dynamic retargeting, meanwhile, lets you show individual visitors ads that contain specific products and services that they