Share on facebook
Share on linkedin
Share on twitter
Share on facebook
Share on linkedin
Share on twitter

How Financial Companies Can Get Proactive With Customer Engagement

When it comes to customer engagement, financial institutions could be doing a lot more in Asia Pacific (APAC). Too many of them are reliant on a reactive approach to customer care, rather than a proactive one. The effect of this is difficult to overestimate: left reactive, customer engagement will stagnate, resulting in a lackluster customer experience, which will cause customers to take their business elsewhere. 

But it doesn’t have to be this way. By using the right artificial intelligence (AI) tools, financial services can shift their customer engagement strategy from reactive to proactive, and reap a whole array of rewards in the process.


Staying Reactive: The State of Play

It is no secret that customer engagement has been lacking in APAC’s financial institutions. According to IDC Financial Insights, 80 percent of banks in the region still create inconsistent, unpredictable customer experiences. The report said that nearly half of banks (46.4 percent) only took an ad-hoc approach to their omni-channel strategies, resulting in a shallow customer experience.

It goes on to say that it is critical for banks to engage customers in real time, and in an adaptive and self-sustaining way. However, it does sound an optimistic tone – that this represents a huge opportunity for APAC’s financial institutions. The ones that can meet or exceed their customer expectations will be well placed to attract loyal customers, as well as the best employees and partners into the bargain.


The Challenges for Financial Institutions

The present situation is a sorry state of affairs due to many challenges that financial institutions are facing when it comes to customer engagement, including the lack of knowledge of how to apply data in a meaningful way to gain actionable insights. This stems from a lack of understanding of the customer opportunities and threats that such data can reveal.

Then there are the legacy issues. A lot of financial institutions are laden with old ways of working, and as such are burdened by cumbersome data and analytic back offices. Coupled with outdated data policies, they make a proactive customer engagement approach nigh-on impossible.

The big question is: How do you undo all this and instigate a proactive approach?

To act proactively, you will need an intimate understanding of who your customers are and what they want, not only from your business, but also in other areas of their lives. The way to do this is to leverage data science and AI to create personalized customer engagement methods.


Getting to Know Your Customers

The first step? Unifying customer data from both offline and online channels to create a complete profile of individual customers. The volume of data is not the issue. Thanks to the increasing digitization of payments and the wholesale rejection of cryptocurrency across APAC, financial institutions have plenty of data to crunch. The challenge is to crunch data from a wide range of sources – such as websites, marketing campaigns, apps, customer relationship management (CRM) and application programming interface (API) integration – and to extract the most meaningful insights from it.

The best way to do this is by using a data science platform that unifies and enriches customer data. This will help you make sense of the oceans of data that you are probably swimming in. By streamlining your data from a multiplicity of disparate sources, you will discover what your customers’ interests are, both financial and non-financial. This will help you get to know your customers intimately, which will help you better serve their needs and wants.


Predict Customer Needs Throughout Their Life Cycle

Once you have built up this 360-degree view of each customer, you can separate them into audience segments. These segments will be based on customers’ behavior and interest.

By using third-party data, deep learning can help you gauge what will be popular and unique among your audience not only on your own channels, but also on external websites, letting you tailor both your product and messaging to an incredibly minute degree. You can even anticipate your customers’ needs at every stage of their life cycle. For example, a customer who just started his first job and is a Premier League fan would be interested in opening a saving account, and might participate in a campaign promoting a lucky draw for a free trip to London.

However, how can you dig even deeper to ensure a higher conversion rate? You need to engage the most valuable customers. Deep learning can predict conversion rates (CVR) and return on advertising spend (ROAS) of each segment, and then rank them. You can then identify which segments are the most valuable based on the ranking, or the ones that are most likely to convert or respond to your campaigns.


Tailor Your Messaging

Now you have an intimate understanding of your audience and their needs, you can create personalized marketing campaigns for each segment (a segment interested in pensions might have very different needs from those looking for a quick loan, for example), and speak to them in a language they understand about subjects that matter the most to them.

You can also choose how you deliver your messaging, be it through email, push notifications, in-app messaging, or SMS. AI can analyze the historical campaign data and find out which channel or what type of creative are most likely to trigger a response. For example, that could be via their smartphone using a push notification during their morning commute, or via email when they are browsing the internet on their tablet in the evening.

A reactive approach to engagement will leave your customers in the dark as to what your company can do for them. Take these steps to get proactive, and you will play a much bigger part in their lives.


* Want to find out more about how AI can help financial companies analyze data, make precise predictions and offer insights that enable them to create a more effective marketing strategy and campaigns? Download our latest white paper ‘Predict Customer Behavior in Financial Services: How Artificial Intelligence and Data Science Enable Better Marketing and Higher ROI’ now.


Let us know the marketing challenges that you’re facing, and how you want to improve your marketing strategy.


Why Should You Use In-App Notifications for Customer Engagement?

In-app notifications can be a very effective weapon in the marketer’s arsenal, but they are much misunderstood and misused. Used well, they can improve the customer experience while boosting your app’s profile and providing valuable customer data. However, used badly, they can drive away otherwise loyal customers, hurting your returns. Here we will explore what they are, how they work, and how to use them effectively in order to drive engagement and ROI.   What Are In-App Notifications? In-app notifications, also known as in-app messaging, are messages that appear while a customer is using your app. These can present as pop-ups or overlays, and can take up the whole screen or only a portion of it. The content of these notifications can vary. They can be a call to action (CTA) like asking your customer to rate the app, or opt in for push notifications. Or they can promote deals and offers, or other features of the app that the customer might have otherwise missed.   What Are the Benefits of In-App Notifications? In-app notifications are all about engagement. By prompting the customer to act with a CTA, marketers can increase their level of engagement. And a more engaged customer

Predictive Audience Segmentation: Take the Shortcut to Identify Your Target Audience_image

Predictive Audience Segmentation: Take the Shortcut to Identify Your Target Audience

The days of general advertising or marketing campaigns targeting the masses are numbered. Whether you are selling a bank loan or clothing online, you have to know your specific target audience. The hard part? Identifying the right audience to help you maximize your marketing return on investment (ROI). Analyzing and segmenting online traffic can be a painfully manual process. Efforts can range from educated guesses to applying simple analysis tools on data. While these will work when you are analyzing a handful of dimensions, the real challenge is when there is complex data or a combination of over 80 dimensions to analyze.   Powerful AI tools to target your audience Today, one of the most exciting tools available to marketers is predictive audience segmentation powered by artificial intelligence (AI). As part of the larger category of predictive analytics, predictive audience segmentation has the power to help companies identify a target audience with the highest potential for conversion to a sale or click or install, whatever your KPIs (key performance indicators) are. Commonwealth Magazine, one of the most influential magazines in Taiwan, experienced dramatic results when it used the powerful predictive audience segmentation capabilities in Appier’s Aixon platform. Not only did

How Real-Time Customer Intent Targeting Can Boost Your Conversions

Traditional audience building goes something like this: Mike has performed action A, so will be sent message A. While this approach works to a point, it is pretty simplistic and doesn’t take into account consumers’ complex online behavior today. The reality is, while Mike may have performed a specific action, this only tells you what he has done, not what he is likely to do in the future. Because of this, allocating budget to this type of basic personalization is a risk. However, it is a risk many brands are still taking, and they are suffering from poor engagement as a result. With some of the latest developments in artificial intelligence (AI), there is a better way: Targeting based on real-time customer intent.   Understanding Real-time Intent Targeting Real-time intent targeting, also known as cognitive product targeting, is the next step in personalization. Enabled by AI, it gives you the ability to accurately predict ever-changing customer intent, down to the millisecond. You can use powerful algorithms and deep learning to analyze billions of consumer data points in real time, across multiple channels. These include both owned channels, such as your website, apps and email, as well as external websites. Taking