Share on facebook
Share on linkedin
Share on twitter
Share on facebook
Share on linkedin
Share on twitter

Do You Need a Data Scientist?

Author | Charles Ng, Vice President of Enterprise AI, Appier

As brands evolve to become more sophisticated with their data, there is increasing pressure to add data scientists to their teams. But not every marketer may need to rush to hire.

We are living in the age of data, and all savvy marketers know that leveraging data effectively is key to better understanding current customers and attracting new ones, driving towards long-term relationships and ultimately staying competitive.

The amount of data available to marketers is vast and will only increase. At some point or another, marketing leaders are likely to have thought about whether they need a data scientist on the team to help them unify, manage and analyse data. Making this decision isn’t – or shouldn’t be – straightforward. There are several considerations for marketers before they seek out data science talent- something that, to begin with, is in short supply in many markets around the world.

The decision to hire a data scientist is likely the result of an evolution. The first step might be to hire analysts, whose job is to make sense of the data, identify patterns and generate basic insights. Next, you may look at hiring analysts with slightly more advanced technical skills, who know how to integrate data from different sources, and perhaps work with more unstructured data sources.

At this point, some marketing teams will consider hiring an experienced data scientist. A data scientist will be able to apply advanced artificial intelligence (AI) technology, including machine learning, deep learning, and optimization, to not only uncover deeper insights, but also automate and optimize certain business decisions. Therefore, an effective data scientist typically has fairly strong business acumen that allows them to align their work with the goals of the business. However, you won’t be able to attract or retain this talent without the right infrastructure for them to work with – they must have good data, and the tools to build and experiment.


Technology Options

For marketing teams without the resources to hire a data scientist, what about technology? Technology has proven it can support many other business functions, and there is technology available that strives to replace – or at least automate – some of the work that data scientists do.

In marketing, many of the challenges are standard across industries and organizations, and this opens the door to implementing technology. Marketing leaders need to look at the challenges they are facing and clearly assess which ones are likely to also be faced by other organizations. For example, all marketing teams want to gather and slice and dice data, and this is easily something that can be offloaded to technology. A good AI platform, for example, can help marketing teams jumpstart their data science capabilities by gathering data into one place and applying pre-existing AI models that can help predict churn, uncover ‘lookalike’ customers and identify new customer segments.

If your business challenges are unique and you require customized solutions, then you’ll need someone who can build specific things for you. There will be things within each company that are special to them, and you will want to dedicate resources towards the things that differentiate you- and not towards things that other people have already solved.

Eventually, parts of data science jobs will also be replaced by technology, but there will still be things data scientists will be useful for. For example, something AI doesn’t do very well is tie all the information and insights generated by data analysis to the business. Marketers will still need someone with a good sense of what the business needs who can ‘translate’ outcomes and next steps to the management.

Ultimately, CMOs don’t necessarily need to choose technology over talent – the best results will likely come from a combination of the two. Some companies will amass or collect different technologies and piece them together to solve problems, others will select people to work with technology to make it perform best for them, and those people could be data scientists, analysts or marketers themselves.


* This article was originally published on Campaign Asia


Let us know the marketing challenges that you’re facing, and how you want to improve your marketing strategy.


How to Elevate Your VIP Program to Drive Customer Engagement and Loyalty

If you are aiming to grow your business, returning customers are key – repeat business is a surefire way to drive revenue and build a sustainable business. One of the best ways to achieve it is through a customer loyalty or VIP program.  However, with hundreds of thousands brands fighting for customer loyalty with various schemes and programs, how do you ensure yours delivers real value to customers, and keeps them coming back for more?   What Does Customer Loyalty Mean for Businesses? Happy customers spread the word, and word-of-mouth is far more effective than a company’s advertising. According to Nielsen, 26 percent of global consumers say brands become familiar to them through recommendations, while only 15 percent claim they stay loyal due to the brand’s advertising and marketing messages. Loyal customers have a higher lifetime value (LTV or CLV) than occasional customers, and they are more likely to make bigger purchases. In a recent KPMG survey, 52 percent of consumers said they would still buy their favorite brand even if it was cheaper and more convenient to buy from a rival. They also make a big difference to a company’s sustainability. The same KPMG survey shows that 86 percent

Why a Data-Driven Approach Is Vital to Business Recovery During Uncertain Times

The value of data to businesses is difficult to overestimate, especially now. Data might once have been seen as a nice-to-have to make brands more profitable, but now leveraging data to make critical decisions is widely viewed as essential to keeping a business afloat.   The New Normal To say these are uncertain times would be an understatement: around the world, the level of uncertainty related to the coronavirus is more than three times higher than during the 2002-3 severe acute respiratory syndrome (SARS) epidemic and about 20 times higher than during the Ebola outbreak, according to the IMF. This has had a huge impact on markets, with the OECD estimating global growth in GDP at as little as 1.5 percent, compared to 2.9 percent in 2019. That would be half of its previous estimate (3 percent) for 2020. It is also impacting global production and supply chains. The World Trade Organization predicts that global trade volume could shrink by between 13 and 32 percent in 2020 compared to 2019. Unsurprisingly, consumer confidence has also been hit. While confidence about an economy’s ability to recover varies greatly by region, there is a definite shift to consumer spending on essentials and

How Digital Publishers Can Capitalize on Data Monetization

In the world of publishing, times are tough. In Asia Pacific, advertising is dominated by online search and social media platforms (accounting for 92 cents of every dollar spent) – so is it any wonder that digital publishers are increasingly turning to subscriptions for more revenue? However, there is a way to stem the tide. As a digital publisher, you are sitting on a treasure trove of customer data that can be made to work for you, especially when combined with external data to provide you with holistic insight on customer behavior. It helps with more effective ad placement for a higher return on advertising spend (ROAS) while also providing a granular view of your customers’ interests and behaviors in order to drive subscriptions. Used correctly, artificial intelligence (AI) can help in both areas, breathing new life into the digital publishing business and making your publication a brand readers and advertisers alike will keep coming back to.   Journeying Towards Personalized Content to Drive Subscriptions Subscriptions are increasingly important for digital publishers. According to a recent study ‘Journalism, Media, and Technology Trends and Predictions 2019’, subscriptions will be the main revenue focus for 52 percent of publishers. Used correctly, AI