Share on facebook
Share on linkedin
Share on twitter
Share on facebook
Share on linkedin
Share on twitter

Are Data Scientists Evolving With the Rise of Artificial Intelligence?

As developments in machine learning (ML) are expected to progress at a phenomenal pace, it is set to become one of the most powerful tools for businesses to enhance productivity and drive innovation. While ML, one of the most popular artificial intelligence (AI) applications, holds a lot of promise for businesses, is the role of data scientist today already evolving in order to keep up with the change?

 

What Is Next in AI

Continued advances in AI will see autonomous systems perceive, learn, decide, and act on their own, but to ensure the effectiveness of these systems, the machine will need to be able to explain their decisions and actions to humans. This is so called explainable AI.

“In the future, many AI systems are going to interact with people, especially those who will take responsibilities, hence the reason why AI needs to be explainable, meaning that the behavior of the system needs to be easily expected and interpreted by people,” said Min Sun, Chief AI Scientist at Appier.

Sun also pointed out that in the future, AI is going to be less supervised, which means that it will require less human inputs, and be more creative.

Data science was previously concerned with time-consuming ML tasks, such as data wrangling and feature engineering, which could take up 80 percent of data scientist’s time, but such tasks can be automated sooner or later, according to Deloitte’s Technology, Media and Telecommunications Predictions 2018 report.

Such advances in AI will give data scientists more time to execute more complex tasks. However, it brings up a problem: a majority of data scientists doesn’t possess the required advanced machine learning skills, such as deep learning (DL), a subfield of ML.

 

The Impact of Machine Learning on Businesses

Previously, companies might have spent a lot of time doing guesswork based on consumer data gathered online and offline, which is usually fragmented and siloed. With an AI-based approach, brands are able to unify data across different channels for a holistic view and analysis of the audience and their conversion journey.

Machine learning and deep learning allow a computer to take in huge sets of data and not only predict the outcome, but also understand what the desired output should be. It can be integrated into many aspects of digital marketing, such as predicting consumer behavior and campaign outcomes, marketing automation, sophisticated buyer segmentation and sales forecasting.

With these technologies, businesses have a more efficient and cost-effective way to build trustworthy AI systems to be used by professionals and/or to be naturally interacted with human users, according to Hsuan-Tien Lin, Appier’s Chief Data Scientist.

So, it’s no surprise to see that businesses are increasingly catching up on the adoption of AI technology. According to the International Data Corporation (IDC), AI continues to be a key spending area for companies in the near future, with worldwide spending on cognitive and AI systems increasing 54.2 percent in 2018 to US$19.1 billion. That number could go up to US$52.2 billion in 2021, IDC predicted.

 

Bridging the Machine Learning Skills Gap

As more businesses look to adopt AI techniques like machine learning and deep learning, data scientists are urged to upskill, in order to keep up with the current trends. Rudina Seseri, Founder and Managing Partner at Glasswing Ventures, wrote in Forbes, “Data scientists – at least the successful ones – will evolve from their current roles to becoming machine learning experts or some other new category of expertise, yet to be given a name”.

Leading tech companies such as Google and Microsoft have already been offering relevant courses aiming to help bridge the talent gap. For example, Google not only made its ‘Machine Learning Crash Course’ available to the general public earlier this year as part of the company’s ‘Learn With Google AI’ initiative, it has also launched a machine learning specialization on Coursera, an online learning platform.

Andrew Ng, one of the world’s best-known AI experts, also launched a set of courses on deep learning through Coursera in 2017, hoping to help more people get up to speed on key developments in AI.

While technical skills will be foundation of the role of data scientists, it’s crucial for them to master human-centric skills too. Data scientists will need to develop a better understanding of the overarching business strategy and business challenges in real-world scenarios, in order to create solutions that can solve real problems.

Businesses are looking for a total solution, Sun pointed out. For instance, self-driving car manufacturers need a system consisting of perception, communication, decision-making and control. In the old days, each module was designed separately, but this has been transitioning to more jointly design since the fatal self-driving Uber crash, where the perception system identified the pedestrian, but the decision-making module failed to react.

The ability for scientists to design a complete system consisting of multiple ML modules will become more and more important,” he said. “In the future, data scientists will need to have the modeling and analysis skills at the system-level to provide business people with the right total solution to the market.”

WE ARE HERE TO HELP

Let us know the marketing challenges that you’re facing, and how you want to improve your marketing strategy.

YOU MIGHT ALSO LIKE

Supercharge Your Remarketing Strategy With Artificial Intelligence

Did you know that the average conversion rate on e-commerce sites globally is around 2.6 percent? That says a lot about the immense potential to grow online sales. One common practice to achieve that growth is through remarketing. Now with advances in artificial intelligence (AI), you can take advantage of methods such as machine learning (ML) to ensure that your remarketing is more effective than ever.   Mike browses on your site and adds a pair of shoes to the shopping cart. He then abandons his cart without actually purchasing anything. As Mike continues his online activity, he is shown an ad promoting the very shoes that he was evaluating, pushing him to go back to your website and complete the purchase. The ad may offer a discount as an incentive. This is classic remarketing. Remarketing aims to reach interested prospects who have not converted, and retarget them with relevant marketing messages that will entice them to purchase from you. It offers higher return on investment (ROI) because it engages people who have already shown an interest in your product and are hence more likely to convert. Advertising is not the sole remarketing channel. Brands can re-engage with shoppers through

Technical Insights: Introduction to GraphQL

At Appier, we have been using GraphQL for around a year. GraphQL drives client-server communications for one of our main AI platforms, Aixon. We have benefitted a lot from GraphQL’s characteristics, such as the concept of “object fields” and its resolvers. Its declarative approach to whitelist all inputs and outputs makes it a great tool to build programming interfaces. This presentation is designed to be an introduction to GraphQL and was originally delivered to other internal product teams in Appier. The talk is specifically designed for Node.JS or Python developers that have never tried GraphQL before. It provides succinct code examples in both programming languages to guide the audience through all the essential topics they should know in order to start building their own GraphQL schema and to run a GraphQL API server. There are already quite a lot presentations on the internet explaining the high-level concepts of GraphQL. In this talk, I have put more emphasis on the actual source code required to get GraphQL running, providing a more pragmatic perspective to understanding GraphQL. The talk covers the following topics: Fundamental parts of a GraphQL server Defining API shape – GraphQL schema Resolving object fields Mutative APIs Making requests

Why Deep Learning Is a Perfect Match for Natural Language Processing

Natural language processing is set to change the way artificial intelligence understands human desires and behaviors, and deep learning is a game-changer for the field. How will business and marketing benefit? Sometimes it takes an attempt to build artificial intelligence (AI) to truly appreciate how complex the human mind is. That has certainly been the case for natural language processing (NLP), a branch of technology devoted to the nuances of how an AI understands human language.  For AI, the seemingly simple task of learning the difference between ‘plaster’ (a substance used for wall covering) and ‘plasters’ (Band-Aid) proves quite laborious. It means feeding the AI many pre-identified contexts for plasters so the AI would have sufficient experience to then identify whether a buyer is looking for home furnishing materials or first aid products in a search request. For the classical method to work effectively, explains Appier’s Chief AI Scientist Min Sun, “it usually relies on humans to explicitly clarify meaning of each word and the relations between words”. It required a level of human intervention to define exceptions, labor that undercuts the gains in efficiency AI was supposed to deliver. The classical method does result in some basic language processing,