Share on facebook
Share on linkedin
Share on twitter
Share on facebook
Share on linkedin
Share on twitter

What Is Churn Prediction?

Customer churn prediction can help you see which customers are about to leave your service so you can develop proper strategy to re-engage them before it is too late. This is a vital tool in a business’ arsenal when it comes to customer retention.

Wondering what churn prediction is, and how it actually works? Read on, and all will be explained…

 

What Is Churn Prediction?

Churn quantifies the number of customers who have left your brand by cancelling their subscription or stopping paying for your services. This is bad news for any business as it costs five times as much to attract a new customer as it does to keep an existing one. A high customer churn rate will hit your company’s finances hard. By leveraging advanced artificial intelligence techniques like machine learning (ML), you will be able to anticipate potential churners who are about to abandon your services.  

 

Why Is It Important?

The truth is you probably already have more customer data than you know. By leveraging this data, you are able to identify behavior patterns of customers who are likely to churn. This knowledge will enable you to segment those customers and take the appropriate measures to win them back.

 

How to Predict Churn

One of the approaches to customer churn prediction is using predictive analytics, which involves various techniques, such as data mining and ML.

For ML to work, you will need data, which is defined by your goal. So, it is important to know what insights you want from the analysis before deciding what data sources are necessary for your churn predictive modeling.

Once you understand the insights you want, you can then select and preprocess data. When selecting data, you can break it into two types: usage and contextual. Usage refers to how much a customer used your company or service before they left (for example, if you are an online food delivery service, how frequently they ordered from you). And contextual data would add more context to the usage data (like how much they spent on each order). 

Since ML model performance and the quality of insights generated depend on the quality of data, you will also want to make sure that all data points are presented in a consistent form suitable for building the models.

The next step would be training, fine-tuning and testing numerous models until you find the one that will make the most accurate predictions. You can then put it into work.

Last but not least, analyze your results. What do they tell you about the reason why customers left? How can you use this information to calculate a customer’s churn probability? And how can you address the issues causing customers to leave (perhaps by offering money off coupons) before they become a bigger problem?

Predicting and preventing customer churn will not only save your company a lot of money on acquiring new customers, but also represent a huge additional potential revenue stream for your business.

Want to know more about how machine learning can help you predict customer churn? Get in touch with us now!

WE ARE HERE TO HELP

Let us know the marketing challenges that you’re facing, and how you want to improve your marketing strategy.

YOU MIGHT ALSO LIKE

How AI Makes the Finance Sector More Customer-Oriented

The financial services industry is ready for the digital era. Traditionally slow to change, the industry – covering banking, investment and insurance – has already started its digital transition, from building digital platforms for its products, to offering chatbots to field customer queries. Predictions estimate the Asia-Pacific fintech market will be worth US$72 billion by 2020. There is a divide, however, between the approach newcomers take – ‘born digital’ disruptors and challengers like Baidu, Tencent and Grab – and that of incumbent organizations. What the disruptors know is how to build a system that is customer-first rather than product-first. While traditional finance organizations have access to plenty of data, from application forms to transactions, the born digital services have access to customer data from different digital touchpoints, creating a full picture of customers’ interests and behavior. This suits the new marketing paradigm of providing a more personalized experience.  Customers have always wanted to make educated decisions about their money, and information that is timely, relevant, trustworthy and accessible is the key. It is now possible for the financial services sector to support them through better marketing.   Asia Leads the World The five biggest banks in the world are located

6 Holiday Marketing Strategies to Meet Shifting Shopper Needs in 2020

As the high sales period of the holiday season approaches, many retailers are hoping to claw back some of the losses they have experienced as a result of COVID-19. However, shifts in customer shopping habits and expectations mean attracting sales requires new insights and presents fresh challenges.  What will the 2020 holiday shopping season bring? And how can brands and marketers better prepare to ensure they beat the competition?   What to Expect in the 2020 Holiday Shopping Season The good news is that shoppers are not going to significantly reduce their spending this year – despite the tough economic times. However, they will be looking for savings. This year’s delayed online sales event, Amazon Prime Day (October 13-14), generated US$10.4 billion in revenue according to early analysis by Digital Commerce 360, showing 45.2 percent year over year growth. Though other sources suggest more modest growth overall. Regardless of spending, what people are buying has shifted. According to KPMG, cold categories include travel, hotels and formal apparel, while hot categories include major appliances, home renovation supplies, and sports and fitness. As social distancing and health concerns remain a high priority, the trend to e-commerce will also continue – with Forbes

CB Insights Targeted Tech Marketing Map: A Take on Omnichannel Marketing

Author | Jennifer Huang, Vice President of Growth and Marketing, Appier This week, business analytics firm CB Insights released its global Tech Market Map Report, featuring Appier as a key player in omnichannel marketing. Not a new term, omnichannel marketing is about brands being available and able to engage with consumers across a variety of channels and touchpoints. The key to success here is to get all those channels working effectively alongside each other, which involves using data to analyze where people are in their customer journey, what they might need and at what time they might need it. This has always been important, and connecting consumers to a brand is truly a combination of art and science. Data and AI are critical tools to gain a better understanding of consumers so that brands can anticipate and meet the needs of their audiences. However at the end of the day, brands are reaching out to humans, who are all unique and complex. When we think about audience engagement at various junctures, we must acknowledge that the people in our audience will have different needs at different stages of their journey, so the audience profile is constantly changing. Knowing this, we