Share on facebook
Share on linkedin
Share on twitter
Share on facebook
Share on linkedin
Share on twitter

Boost High-Quality App User Acquisition With Artificial Intelligence

In the early days of app marketing, brands defined success as the number of times their apps were downloaded and installed. With a deeper understanding of customer behavior in the app world has come the realization that the continued engagement and retention of customers is a much more valuable metric.

With one in five users abandoning apps after just one use, only the customers who continue to engage with the app will fulfil valuable in-app events such as subscription and purchase, which ensures higher return on investment and revenue, and lower churn rate. Brands have thus turned their attention to high-quality user acquisition (UA), throwing their money behind growing the customer lifetime value (CLV/LTV).

But it all starts with the app install. The key to optimizing in-app events is to drive quality installs by identifying users who will engage with your app prior to the initial download – at the right volumes and the right price.

UA requires that marketers analyze data points to identify customer behavior trends and arrive at insights around which of them will demonstrate stickiness. With the sheer volume of data that marketers are dealing with today, manual analysis is not feasible, and they are turning to artificial intelligence (AI) solutions for help.

 

AI Learns From Historical Data to Optimize Future In-App Events

AI solutions offer marketers an in-depth understanding of customer behavior and a holistic view of CLV. They start with a wider audience and then use data to narrow down the field to high-performing lookalike audience profiles. This is achieved by studying historical data, identifying patterns and then using these to predict whether a specific campaign will attract the right audience and convert them. Historical data enables the AI tool to discover and target similar profiles most likely to respond to your message.

By using the deep learning method, for instance, Appier uses proprietary deep funnel optimization to improve campaign performance. The deep funnel approach allows the system to learn from similar campaigns and historical data, in order to make predictions as the campaign is running or even beforehand to ensure cost and time efficiency. It also helps in audience sampling through prediction, even if the traffic source is not from historical data. If trends show that the KPIs will not be met, deep funnel optimization will then recommend that campaigns be tweaked or stopped.

Additionally, the tool analyzes which users are engaging with the app through in-app purchases or signups, and then optimizes the ongoing campaign to find and target more such users. Essentially, these users are targeted based on data that predicts they are more likely to make in-app purchases. As a result, the solution drives highest quality traffic, which, in turn, leads to high-quality installs and well-performing in-app events.

Here is an example of how deep funnel actually works in practice: Indonesia’s leading ride-hailing app wanted to attract as many users as possible in a competitive market. It decided to use AI tools to recruit valuable users who were likely to make more bookings, and thus lower its customer acquisition cost (CAC). The company deployed Appier’s deep funnel predictor, which predicted and optimized future events in the conversion journey (such as retention and purchase) by analyzing early user patterns, such as clicks and installs. Together with the ad fraud predictor blocking suspicious traffic to ensure better campaign performance, the company was able to push up its install rate by 119 percent and booking rate by 63 percent, while reducing the CAC by 45 percent.

In this way, using AI tools allows marketers to efficiently manage their app-install advertising frequency spend, and improve UA.

 

Reactivating Existing Users and Preventing Ad Fraud

A complete AI solution can also target your existing user base and boost in-app events by reactivating sleeping users through user segmentation and customized marketing campaigns.

In addition, AI tools can further optimize app install ad spend by detecting fraud. A recent global study estimates the share of fraudulent installs has accounted 11.5 percent of all marketing-driven installs over Q1 2018, costing marketers US$700-US$800 million around the world. AI’s machine learning capabilities can detect and prevent suspicious ad installs through multi-stage fraud detection, where the algorithm learns to identify new and evolving fraud patterns and develops new rules to respond.

As all app marketers know, an app install is not the end of the line – it’s just the beginning. The marketers’ challenge lies in understanding and predicting the customer journey, engaging customers and pushing them towards more valuable in-app events. AI can help you optimize your app-install advertising spend by facilitating high-quality UA, thus reducing trial and error, lowering cost per install, and enhancing revenue.

WE ARE HERE TO HELP

Let us know the marketing challenges that you’re facing, and how you want to improve your marketing strategy.

YOU MIGHT ALSO LIKE

How to Convert Your Offline Customers Online

Consumers in Asia Pacific are increasingly choosing to shop online rather than in-store, and by 2021, e-commerce sales will account for more than a quarter of all retail sales in the region. Despite the growth of online retail, in-store experience is still unbeatable from an experiential perspective, setting the tone for your brand and allowing customers get hands-on with the products. Ideally, your in-store customers would shop with you online as well. So, how do you convert those offline shoppers to online? There are a range of artificial intelligence (AI) techniques that can help you bridge the gap between in-store and online experience. Used correctly, they will offer your customers the best of both worlds.   Why Convert Offline Customers Online? If you want to boost online sales, attracting new customers should be high on your list of priorities. However, another approach is by converting your in-store customers from offline shoppers to online. Increasing online sales is not only good from a profit perspective. It is also smart business when you look at the long term. By catering to your customers’ needs online as well as offline, your brand will play a bigger part in their lives, and hence occupy

Technical Insights: Introduction to GraphQL

At Appier, we have been using GraphQL for around a year. GraphQL drives client-server communications for one of our main AI platforms, Aixon. We have benefitted a lot from GraphQL’s characteristics, such as the concept of “object fields” and its resolvers. Its declarative approach to whitelist all inputs and outputs makes it a great tool to build programming interfaces. This presentation is designed to be an introduction to GraphQL and was originally delivered to other internal product teams in Appier. The talk is specifically designed for Node.JS or Python developers that have never tried GraphQL before. It provides succinct code examples in both programming languages to guide the audience through all the essential topics they should know in order to start building their own GraphQL schema and to run a GraphQL API server. There are already quite a lot presentations on the internet explaining the high-level concepts of GraphQL. In this talk, I have put more emphasis on the actual source code required to get GraphQL running, providing a more pragmatic perspective to understanding GraphQL. The talk covers the following topics: Fundamental parts of a GraphQL server Defining API shape – GraphQL schema Resolving object fields Mutative APIs Making requests

Using Deep Learning to Acquire Valuable App Users

Although app downloads continue to rise, app abandonment and fraudulent use – where bots steal from app marketers via methods such as false referral attribution – threaten to undermine brands’ efforts at achieving return on investment. Marketers have therefore turned away from app installations as a measure of return and now look at in-app spending and the lifetime value (LTV) of a customer. By 2022, global mobile app downloads will hit 258 billion and in-app spending will reach US$157 billion. Competition is likely to heighten as apps vie for attention, so it is important for you to engage users as soon as they install and open the app. Completing an in-app event, from agreeing to receive push notifications to starting a subscription, increases the chances of retention – a key marker for customer LTV. Unfortunately, user engagement and retention is an area where 55 percent of marketers consider their biggest challenge. Complicating matters is the prevalence of fraudulent installs and false in-app actions, which rose significantly in 2018 at a cost of about US$19 billion for app marketers. Artificial intelligence (AI) can identify the traits and behavior of high-value app users and help you acquire them, as well as support