Share on facebook
Share on linkedin
Share on twitter
Share on facebook
Share on linkedin
Share on twitter

AI Predictions and Trends to Watch in 2021

Author | Dr. Min Sun, Chief AI Scientist, Appier

Artificial intelligence (AI) and machine learning (ML) have moved from the backrooms of computer science into the mainstream. Their impact is being felt in everything from how we shop through to money markets and medical research.

Larger models have been trained in separated modality. For instance, GPT-3 is the first 100-billion-parameter model for natural language processing (NLP). Recently, a-trillion-parameter model (T5-XXL) has also been trained. They can be used to write articles, analyze text, perform translations and even create poetry. 

In parallel, we’ve seen models used for image recognition and generation greatly improved as they have also been trained with more data sets. What we are seeing emerge is the power that can come from combining two or more AI models without changing these large models. In this way, combining these large models becomes affordable. That will allow us to use AI to interpret text and generate a completely new image.

We are also seeing how the architecture of one model can be adapted to solve problems across different domains. The most powerful example is how the architecture that powers NLP models is being used in biomedical research. In the biomedical domain, sequences of codes, such as DNA or amino acid, are commonly used. Since sequences of codes can be treated as a type of language with hidden structure, the architecture used in NLP models can be potentially used to understand and generate sequences of codes in the biomedical domain as well. One impressive example in early 2021 is that biomedical researchers used language model architecture to predict virus mutations and to understand protein folding – a key challenge in the creation of some of the vaccines now available.

 

AI in Healthcare and Biomedical Research

The prototype of messenger RNA (mRNA) COVID-19 vaccines have been developed in days thanks to the digitization tools of genetic code sequencing and the transcription tools of making mRNA from genetic code sequence. With the help of AI to predict new mutations in the Sars-Cov-2 virus, the process of developing mRNA vaccines will be even faster.

Machine learning and AI don’t replace clinicians and researchers; they allow these professionals to work faster and rapidly test hypotheses. Instead of waiting for cell cultures to grow in the physical world, they can use these models to understand what will happen much faster in the digital simulation.

AI can also be used as a diagnostic tool. As well now being approved to read x-rays, AI can be used to listen to the sound of someone coughing and indicate whether the patient is likely to be suffering from COVID-19 or some other illness.

As more and more people wear devices that can monitor heart rate, body temperature, blood pressure and other critical factors, the data can be used to give doctors greater insight into a patient’s condition. It also aids accuracy when making diagnoses as doctors and other clinicians are no longer reliant on patient recollections.

 

The E-Commerce Boom Is AI-Driven

Over the last year, online commerce has grown significantly and is expected to continue to increase. COVID-19 restrictions have resulted in people spending much more time online – not just shopping but in online meetings, playing games, accessing social media and using apps. The growing digital journeys undertaken by people have generated more data that can be used to understand human behavior.

However, more data also brings a greater complexity. In the past, if a brand wanted to reach the widest possible audience, they would pay for a TV or radio ad. Today, there’s no single, most effective channel for reaching customers. Reaching the right customer on the right channel at the right time is complicated for humans, but that complexity can be overcome through the use of AI.

We can expect to see AI being used more and more to generate insight to not only find the right customers that marketers look for, but also to access the often-forgotten long tail of customers. In addition, AI will be used to dynamically generate creative to create content for those customers, driving higher engagement. It also gives marketers a way to effectively create and test different creative at a pace and scale previously thought impossible.

 

Data-Driven Finance Relies on AI

Furthermore, the main application of AI in finance has been in high-frequency trading where transactions are conducted between machines faster than any person can. This will continue in both traditional finance and in the world of cryptocurrencies, where we see different AIs engage in ‘warfare’. Investors have been using AI to make long-term predictions – which has required systems that can understand investors’ long-term targets. These were typically centered around measures such as revenues, incomes and profits. However, that has proven more challenging with cryptocurrencies.

While high-frequency trading strategies are important, there is another factor that is far more challenging to predict. Much of what we see in cryptocurrency markets is driven by ‘human madness’. While AI models struggle with this today, we can expect the AI models of the future to evolve and do a better job of predicting this behavior through closely monitoring trends in media and social networks.

 

The Future of Education

Curricula and textbooks have typically been developed to serve large populations of ‘average’ students. These materials include content designed for a wide gamut of different abilities. However, experts, such as Sir Ken Robinson, point out that the ‘conveyor belt’ model of education doesn’t take into account the individual abilities and needs of students.

Therefore, we see AI being used to revolutionize the way curriculum is created and delivered. It can be used to provide more personalized curriculum or personal problem sets for students. Instead of every student working through the same set of problems or questions, they receive a set that are customized to their specific level.

For example, an elementary school student may be very strong with fractions in mathematics, but has a problem with trigonometry. Instead of putting the student through the standard curriculum, he or she would spend less time on fractions and more time on trigonometry. As a student proceeds through a course, AI will monitor their progress and self-modify to meet the specific needs of that student.

With so much content now available online, cheating and plagiarism has become a huge issue. While detecting plagiarism is quite easy – there is already AI that can detect direct copying and similar text where just a few words or the tense are altered – there are other challenges. For example, a student may take content from one language and translate it to another. This is harder to detect, but AI is being developed to solve this problem.

Similarly, image interpretation AI is being developed to find instances where arts students copy or imitate a design.

 

Smart Farming and Factories

Factories and farms are using data in innovative ways too. However, they differ from many other AI applications as they don’t focus on end-users. Instead, they focus on products, produce and machines. This requires an investment in sensors, robots and automation, and the optimization of operations.

The biggest development we are seeing in this area is in the generalization of findings between different areas. For example, if AI is being used to increase yields in an apple crop, can those AI models be reapplied for the growing of other fruits such as bananas or peaches?

Similarly, if a factory is manufacturing LCD panels and has found ways to increase their yield rates, can those tools and lessons be applied to other manufacturing processes and factories?

Perhaps the biggest prediction we can make about AI in 2021 and beyond can be summarized in one word: leverage. Using existing AI model architecture, combining well developed models and finding ways to generalize existing models to other applications will continuously increase the impact of AI along with accelerated digital transformation across many domains.

 

* This article was originally published on ITProPortal.

WE ARE HERE TO HELP

Let us know the marketing challenges that you’re facing, and how you want to improve your marketing strategy.

YOU MIGHT ALSO LIKE

Catch the Right Audience for Your Next Product Launch

For any marketer, one of the first and most critical steps in any successful new product launch is identifying the right audience. Rather than relying on demographics and guesswork, leveraging artificial intelligence (AI) can help you find the prospects with the highest potential to convert among your existing customers, and beyond. During a new product launch the pressure is on. Not only do you need to come up with a sound marketing plan, you also need to work within a budget and demonstrate good ROI. Before you get into the detail and tactics, the first and most important step in any product launch campaign is identifying the right audience – the potential customers most likely to engage with and buy your new product. This is typically done by figuring out the ideal audience profile for your product. For example, if you are launching a new top range razor, you might narrow your audience down to males, aged 25-45, who like personal grooming and have a high disposable income. However, by talking this generalized approach it is hard to guarantee, with any level of certainty, who in this group will engage with or buy your product. In addition, if you only

Introducing Josh Shozen as SVP of Enterprise Solution Sales for Appier Japan and South Korea

Author | Junde Yu, Chief Business Officer, Appier I’m excited to welcome Satoshi (Josh) Shozen to our team as Senior Vice President of Enterprise Solution Sales for Japan and South Korea. Based in Tokyo, Josh brings over 15 years’ experience in enterprise software sales management and digital marketing in Japan and the region where he has worked with global technology companies including Adobe, Proscape Technologies, and Microsoft. Before joining Appier, Josh was the country manager for SundaySky Japan, the creator of SmartVideo platform, and helped develop the strategic partner ecosystem for selling into major FSI and Automotive clients. In his new role, Josh will lead our teams in both countries to strengthen the business of Aixon, an AI-powered Data Intelligence Platform that Appier launched last July. More than 10 clients, including Japanese real estate portal LIFULL, have already successfully deployed Aixon and transformed their digital marketing campaigns. While we continuously upgrade technology for Aixon’s functionality to help our customers’ business success, such as the recent integration with LINE Business Connect, we also see the strong potential of our business in both the marketing and data intelligence platforms. With Josh on board, we are looking to accelerate our business in Japan

7 Critical Challenges of Recommendation Engines

Personalized recommendations have never been more important for businesses looking to attract and retain customers. According to Accenture, nine out of 10 consumers are more likely to shop with brands that provide relevant offers and recommendations. Recommendations also have a huge impact on a business’ bottom line as they can result in a 16 percent increase in conversions. Therefore, it is no wonder that recommendation engines are on the rise. Industry Arc reports that the global market for recommendation engines will grow from US$1.14 billion in 2018 to US$12.03 billion by 2025.   Highly Recommended: The Benefits of Using Recommendation Engines With continuing advances in artificial intelligence (AI), recommendations are no longer aimed at general audiences, or even those of a certain segment. Using deep learning-based recommendation engines, marketers today can target consumers with hyper-personalized recommendations at the individual level, based on metrics like persona, location, interests, real-time online behavior and so on. This will not only allow marketers to drive online traffic through retargeting ads or email marketing, but also reduce customer irritation and churn rates. Personalized product recommendations also help engage customers by serving them with products or services that are highly relevant to them. This will encourage