Share on facebook
Share on linkedin
Share on twitter
Share on facebook
Share on linkedin
Share on twitter

6 Steps to Boost Conversion Rates With Multivariate Testing

Testing is a crucial part of any online marketing strategy. It can help you figure out what customers want by telling you what is working and what is not. With this information you can then optimize your digital efforts and, in turn, increase leads and conversions. 

There are many different types of testing you can engage in, from basic experiments where you try something new for a couple of months to A/B testing. However, for more advanced marketers, multivariate testing (MVT) is the next step. 

According to recent research, more than half of successful marketers today engage in multivariate testing. However, there is still some confusion over what multivariate testing is, what it involves, and how it differs from more commonly-used A/B testing.

Put simply, multivariate testing involves testing multiple combinations of elements on a  website or in a digital campaign simultaneously. For example, creating and testing multiple variations of a live webpage, each with subtle changes to the headline, CTAs, navigation, and images.

By comparison, A/B testing, also known as split-testing, only tests two options. For example, you might test two emails with different subject lines or test two website landing pages, each with a radically different approach in both design and content.

In A/B testing, 50 percent of your audience gets one version, while 50 percent get the other to see which performs better. In multivariate testing, multiple versions are split multiple ways to see how individual elements perform together to figure out which are the most engaging.


The Pros and Cons of Multivariate Testing


One of the big advantages of multivariate testing is that it allows you to alter and analyze many different elements at once, boosting efficiency and accelerating the optimization process. You can also be less cautious when it comes to new ideas as there are no limits on how many elements can be modified.

Multivariate testing also goes beyond just telling you that one version is better than another. Instead, it identifies which specific elements are working, as well as how elements work together and why, making it more informative and insightful.

You can also apply the data and insights from each test to future campaigns. For example, if you identify that red CTA buttons with a line of copy above increase engagement, you can use this in your next design.  


Multivariate testing does, however, come with some drawbacks. One of the biggest is that it requires significant traffic or conversions to complete a test. This is because you need sufficient customers in each of the test groups to generate statistically significant results.

Multivariate tests can be complex. Plus, you need to keep the variation numbers in a reasonable amount. Otherwise, you could end up testing thousands of variations against the original, increasing the time to run the test and get results.

If you are only running a single multivariate test, it can also be hard to figure out the exact reason a design performs in a certain way. Therefore, the more tests you do, the greater insights you can glean.


When to Apply Multivariate Testing

While A/B testing is many marketers’ default method, there are many situations where multivariate testing can add real value.

Multivariate testing can be extremely effective for website optimization, where you have pages with multiple elements. It is a great way to gather data and to gain detailed insights into complex customer behavior. It can also work for digital ads, for example, where you want to test multiple variations of headlines, ad copies, images, and CTAs.  

If you have less than 100,000 monthly site visitors, multivariate testing may not be ideal. The only exception to this would be if you have very high conversions. It might also be too early for multivariate testing if you are a startup engaged in customer development.

It often makes sense to start with A/B testing, which looks at broader changes first. You can then use multivariate testing to dig deeper and optimize further. 


Conducting a Multivariate Test

Multivariate testing doesn’t have to be a complicated process. Thanks to today’s automated software, these types of tests are now easier than ever to run and analyze.

Here are the key steps:

Step 1: Review your site or campaign

Think about what elements of your website or ad campaign stand out or need work. Elements can include call to action (CTA) buttons, headlines, images, colors, navigation, or content tone.

Step 2: Formulate a hypothesis

Come up with a hypothesis as to why a specific element may not be working. For example, perhaps your CTA button is too small or in the wrong place, your headline is the wrong message or color, or your navigation is too complex.

Step 3: Create different variations

Create variations of all the different elements you are testing. Automated multivariate software can do this for you to generate unique versions of the page or campaign being tested. 

Step 4: Determine your audience sample

For multivariate testing, your audience sample needs to be representative of the whole. You also need to make sure it is a large enough sample to be accurate. Again, automated tools can help you split traffic effectively among those variations.

Step 5: Run your multivariate test

Once your audience and sample size are defined, you can begin the MVT process. As MVT requires larger audience samples, it can take a bit of time to produce results.

To maximize the webpage or campaign performance and ensure the effectiveness of the test, you can leverage artificial intelligence (AI) to automatically adjust traffic distribution across the different variant groups. For example, AI can distribute users to the best performing combinations while keeping minimum users in the remaining ones to ensure statistical effectiveness.

Step 6: Analyze your results

Once you have enough traffic or conversions and your results are organized, you can then look at metrics such as your engagement, time per session, bounce, or conversion rates to identify increases or decreases to prove or disprove your hypothesis.


Multivariate testing can enhance your optimization efforts, where there are multiple elements at play. By using it alongside A/B testing and doing it periodically over time, you can keep your insights up-to-date, as customer behavior and preferences will change over time.


* Are you looking to optimize your website or campaign with multivariate testing? Our proactive customer engagement platform, AIQUA, can help. Contact our team today for an exclusive consultation.


Let us know the marketing challenges that you’re facing, and how you want to improve your marketing strategy.


Fighting Ad Fraud with Artificial Intelligence

Advertising fraud, ad fraud for short, has become a major threat to the digital advertising industry. According to the Association of National Advertisers in the US, ad fraud will cost companies an estimated US$6.5 billion in 2017. A recent report by Juniper Research paints an even grimmer picture, estimating advertisers will lose US$19 billion to fraudulent activities next year. This figure, representing advertising on online and mobile devices, will continue to rise, reaching US$44 billion by 2022. The industry has spent considerable resources looking for effective ways to mitigate the effects of ad fraud. I use mitigate deliberately because just as with cyber fraud or financial fraud, there is no way to totally eradicate the problem: you can only hope to stay one step ahead of the bad guys. Most ad fraud countermeasures have centred on rule-based methods and these are effective ways to combat simple ad fraud activities. However, the ad fraud attempts are becoming more sophisticated and traditional countermeasures are inadequate today.   An AI-based approach As ad fraud attempts become more sophisticated and difficult to detect, so must our fraud detection mechanisms evolve in tandem and the only way that this can be achieved is using artificial

How to Turn Abandoned Shopping Carts Into More Sales

Cart abandonment continues to be a major issue for e-commerce businesses. Up until now it’s been tackled using paid media retargeting. However, today’s AI-driven marketing automation platforms are making it possible to catch and convert cart abandoners, effectively and efficiently, through brands’ owned media channels. According to recent data by SalesCycle, approximately 79.17 percent of online consumers worldwide put items in their virtual basket but failed to checkout in 2018. The percentage varies slightly by region with Asia Pacific having the highest abandonment rate of 52 percent, compared to the rest of the world. There are many reasons why shoppers abandon carts. Some are just browsing, still comparing prices or simply distracted. Others become frustrated with slow-to-load pages, mandatory sign-ups, or are put off by high costs or a lack of payment options.   Re-engaging With Remarketing While some cases of abandonment can be avoided by improving your website or app UX, many can be overcome by remarketing. If your product pops up again elsewhere, it stays top of mind and can prompt people to complete the purchase. Cart abandonment remarketing via paid media channels, such as Facebook and Google Ads, has proven effective in winning back lost carts and

Everything You Need to Know About Marketing Attribution

In today’s multi-channel, multi-device world, the average consumer uses as many as six touchpoints before making a purchase, compared to just two nearly 20 years ago. Therefore, it is crucial for marketers to map the customer journey and figure out which channels are worth the effort. This is where marketing attribution can help.      What Is Marketing Attribution? Marketing attribution is the art and science of figuring out which channels, touchpoints or campaigns in the customer journey are driving purchases or desired action. To do this, you can use attribution models. Attribution modeling is a framework that helps determine how much value or credit to assign to each marketing effort, from in-app advertising to social media and email campaigns.  To track digital customer journeys, pixels and conversion tracking are set up in relevant platforms (such as Google Analytics and Facebook Pixel). It is important to have a consistent system for UTM tagging and tracking that prioritizes clean, complete data.   Why Is Marketing Attribution Important? Marketing attribution can help you paint a clearer picture of how customers engage with your brand across different channels and touchpoints. By allowing you to credit each with a conversion value, it helps you determine


Let us know how we can help improve your marketing strategy